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Abstract—The ability to provide temperature and water-vapor
soundings under extreme weather conditions, such as hurricanes,
could extend the coverage of space-based measurements to critical
areas and provide information that could enhance outcomes of
numerical weather prediction (NWP) models and other storm-
track forecasting models, which, in turn, could have vital societal
benefits. An NWP-independent 1D-VAR system has been devel-
oped to carry out the simultaneous restitutions of atmospheric
constituents and surface parameters in all weather conditions.
This consistent treatment of all components that have an impact on
the measurements allows an optimal information-content extrac-
tion. This study focuses on the data from the NOAA-18 satellite
(AMSUA and MHS sounders). The retrieval of the precipitating
and nonprecipitating cloud parameters is done in a profile form,
taking advantage of the natural correlations that do exist between
the different parameters and across the vertical layers. Stability
and the problem’s ill-posed nature are the two classical issues
facing this type of retrieval. The use of empirically orthogonal-
function decomposition leads to a dramatic stabilization of the
problem. The main goal of this inversion system is to be able to
retrieve independently, with a high-enough accuracy and under
all conditions, the temperature and water-vapor profiles, which
are still the two main prognostic variables in numerical weather
forecast models. Validation of these parameters in different con-
ditions is undertaken in this paper by comparing the case-by-case
retrievals with GPS-dropsondes data and NWP analyses in and
around a hurricane. High temporal and spatial variabilities of the
atmosphere are shown to present a challenge to any attempt to val-
idate the microwave remote-sensing retrievals in meteorologically
active areas.

Index Terms—Atmospheric sounding, data assimilation, drop-
sonde, hurricane, microwave remote sensing, retrieval algorithm.

I. INTRODUCTION

PASSIVE microwave data measured in meteorologically
active areas carry a wealth of information on the hydrom-

eteors as well as on the temperature and water-vapor profiles.
The assimilation of these space-based measurements, in either
geophysical or radiometric form, could help the numerical
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weather prediction (NWP) models in the analysis and forecast
stages by giving information about actual cloud and precipita-
tion, thus reducing the spin-up problem that usually impacts
the beginning of the forecast period [1]. The effect of the
hydrometeors on the brightness temperatures measured by the
microwave sensors may be negligible, significant, or something
in between depending on the spectral region considered and
on the type and intensity of the precipitation, making these
millimeter-wave sensors an ideal tool to probe the active areas.
This effect also depends, in certain cases, on the thermody-
namic temperature as this changes the dielectric properties and,
therefore, the absorption of the water, and on the atmospheric
water vapor, above and within the active area, as this has a
screening effect on the sensitivity to cloudy layers, all of which
advocate for having a consistent treatment of the atmospheric
profiles of temperature, water vapor, and hydrometeors. For
this purpose, a physical retrieval algorithm has been devel-
oped based on a radiance assimilation-type technique to invert
simultaneously the vertical profiles of temperature, water va-
por, nonprecipitating cloud, and liquid and frozen precipitating
hydrometeor parameters. The surface boundary layer is also
treated dynamically by including the surface-emissivity spec-
trum and the skin temperature as part of the control-parameter
vector. Optionally, the inversion of surface pressure could also
be triggered under certain conditions, otherwise obtained from
the background (fixed value). The information content in the ra-
diances is however limited. This is alleviated by performing the
retrieval in a mathematically reduced space which stabilizes the
retrieval significantly. However, stability of the retrieval does
not eliminate the null space: existence of multitude solutions
that fit equally well the radiances. In other words, including the
hydrometeors in the retrieved state vector increases the number
of degrees of freedom in the solution-finding process. It is
important to note that these degrees of freedom are also due to
the limited number of channels available. Adding hypothetical
channels would theoretically put additional constraints on the
solution finding and reduce these degrees of freedom.

This null space is the main reason why the stated goal of this
study is primarily the sounding of temperature and humidity
and, to a lesser degree, the surface sensing under extreme
weather events. The cloud and precipitating parameters are part
of the retrieval process mainly to absorb the effects they have
on the raw measurements.

The microwave sensors AMSU and MHS onboard
NOAA-18, which contain a combination of semiwindow and
sounding channels, will be used to test this retrieval algorithm.

U.S. Government work not protected by U.S. copyright.
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Note that the approach will sometimes be purposefully labeled
assimilation and sometimes retrieval across the remainder
of this paper. Assimilation of radiances amounts indeed to a
retrieval, the retrieved parameters being the control parameters.
The difference resides in the reliance on an existing analysis
used as first guess and background to which the retrievals are
constrained (or assimilated). But, it is important to state at this
stage that no NWP information is used in this system (forecast
or analysis). As will be described later, the background
constraints will be built offline based on climatology. On
the radiance level, all channels are used simultaneously in
order to obtain a retrieval that satisfies all measurements
together. This study should be viewed as an attempt to treat the
whole geophysical state vector, including hydrometeors in a
consistent fashion, but relying on the radiometric signal only, as
we do not use the cloud/convective schemes either to generate
hydrometeors from the temperature and the water vapor as
other studies chose to do [5], [9], [27]. Nonprecipitating cloud
and hydrometeors are thus treated from a pure radiometric-
signal stand, just like the water vapor, temperature, emissivity,
and skin temperature.

The next section reviews the previous studies that dealt
with assimilating rain-impacted microwave measurements ei-
ther within an NWP context or not, followed by Section III
describing the retrieval system used in this paper. The latter
also briefly describes the different components used within
the 1D-VAR system, including the forward radiative operator.
Section IV focuses on describing the instrumental configura-
tion, while Section V takes a look at the expected performances
in a simulation setting. Section VI deals with describing the real
data that we will be using, including the GPS-dropsondes, and
lays out the validation results.

II. REVIEW OF RAINY DATA ASSIMILATION

AND RETRIEVAL

Microwave-based assimilation of radiance measurements is
not new; NWP centers have routinely or experimentally assim-
ilated the clear-sky radiometric data as well as the microwave-
retrieved products and have more recently directly assimilated
the radiances measured in cloudy and precipitating conditions
[5], [9], [30].

Microwave measurements have also been used extensively
for the retrieval of cloud, rain, and other precipitating parame-
ters, either with relatively simple regression-based algorithms
or with more physically based algorithms, similar to those
used in NWP assimilation. Numerous sensors have been used
for measuring cloud and precipitation: SSM/I, TRMM/TMI,
AMSU/MHS, and AMSR-E are among them [13], [17], [48].
Improvements have recently been made in this field of assim-
ilating the cloud- and rain-impacted microwave radiances into
NWP models as well as in the microwave remote sensing of
cloud and hydrometeor parameters. These two problems are, in
fact, similar in nature. The former (NWP assimilation) attempts
to fit the impacted radiances by adjusting the temperature
and water-vapor profiles and, along the way, generates the
cloud/hydrometeor parameters (usually, by incorporating the
cloud and convective schemes). The latter (hydrometeors re-

trieval) is based also on finding the hydrometeors (or integrated
amount) that fit the radiances either through a lookup table
(LUT) search or through a variational technique and, along the
way, need to account, somehow, for the temperature and water-
vapor profiles. The physical inversion approach was found to
be superior in retrieving quantities (such as rainfall rate) using
the regression-based algorithms. One obvious reason is that
a physical retrieval can adapt dynamically to the particular
circumstance and is more likely to distinguish the precipitation
signal from the water vapor and temperature signals. We exclu-
sively focus on the physical approaches in this review.

A. Classification via Handling the Ill-Posed Nature

The inversion of cloudy/rainy radiances into the geophysical
space is a notoriously ill-posed problem. Several physical ap-
proaches have been tried in the past to add external constraints
and, therefore, stabilize the problem. Some approaches are
based on precomputation of hydrometeor profiles and their
corresponding radiances. The retrieval, thus, becomes a residual
minimization procedure which aims at finding the closest pre-
computed profile to match the measurements [17], [31], [44].
Others rely on the NWP forecast outputs and associated cloud
and convective schemes to constrain the temperature and wa-
ter vapor as well as their relationship to the cloud and hy-
drometeor parameters [5], [9], [26], [27], [35]. As mentioned
earlier, the present study employs the empirically orthogonal-
function (EOF) decomposition technique to all vertical profiles,
including the hydrometeors as well as to the surface emissivity
vector, in order to constrain the inversion problem. The use of
background covariances, which are computed offline and inde-
pendently from the NWP forecast data, constitutes an additional
constraint to the problem, in addition to introducing physical
consistency between the retrieved parameters.

B. Bayesian Approach

Tassa et al. [44] developed a Bayesian algorithm to re-
trieve surface precipitation and cloud profiles over the ocean.
The training is done using a combination of outputs from a
mesoscale microphysical model and a 3-D radiative transfer
model (RTM). This method is similar to that adopted by
Evans et al. [11], Kummerow et al. [17], and Marzano et al.
[28]. In these algorithms, the retrieval is done by selecting,
among the precomputed profiles, those that minimize the resid-
uals with the measurements at hand. This strongly depends
on the cloud/radiation database and does not account for the
local variabilities of temperatures, water-vapor profiles, and
surface emissivity that could equally impact the brightness
temperatures. This method typically applies to the cloudy/rainy
conditions. The clear-sky case is screened out in the preprocess-
ing stage. Preclassification of precipitating events based on the
nature (stratiform/convective) or intensity (moderate/intense)
is usually performed. In [45], the important parameters that
do impact the brightness temperatures, but are not part of the
searched parameters, are used to generate a sensitivity matrix
which is used as an upper threshold limit to the residual
minimization process. These factors include size distribution,
density, shape, and phase for the hydrometeors. This matrix
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could also be used in variational analyses but was not in that
study. Di Michele et al. [31] developed a Bayesian retrieval al-
gorithm named Bayesian algorithm for microwave precipitation
retrieval (BAMPR) that they compared to the Goddard profiling
(GPROF) algorithm. Despite the similar approaches between
the retrieval approaches, they found that their results differ, and
those differences were attributed mainly to the training datasets
and the cloud classification.

C. 1D-VAR Approach

Eyre [12] used a variational technique (labeled equivalently
estimation-theory solution) for atmospheric sounding which
he applied to the microwave and infrared data from TIROS
Operational Vertical Sounder (TOVS). Besides temperature and
moisture, cloud amount and top pressure were also retrieved.
Surface pressure, temperature, and emissivity were also al-
lowed to vary. A damping term was introduced in the solution
for certain parameters to stabilize the retrieval process after an
oscillatory behavior was noticed. This consisted of a diagonal
matrix with unity values except for those parameters causing
the instability, amounting to an effective reduction of their
variances. Eyre [12] studied the effect of assuming a single
layer cloud model by simulating the mixed clouds. He found
that the system was able to find an effective cloud amount and
vertical location to compensate for the mixed cloud nature. It is
interesting to highlight that he reported also that the effects of
the effective cloud-parameter retrieval had little impact on the
temperature and humidity profiles.

The standard use of 1D-VAR algorithms for the inversion
of microwave data relies on using a background covariance
matrix. This was shown to have limitations in the case of
cloud and rain, as their variances will inevitably be large which
would amount to an absence of constraint [37], [38]. In this
latter study, a physical retrieval of moisture, cloud, wind speed,
and rain was applied to SSM/I, and a spatial smoothing was
adopted, attributing the horizontal variability exclusively to
cloud structures.

In their 1996 study, Phalippou et al. introduced a 1D-VAR
algorithm for the clear and cloudy skies for an SSM/I
configuration and highlighted its potential for the NWP. It
later became operational at ECMWF. The integrated amount
of cloud liquid was made to vary as a scaling factor for the
retained vertical structure (the output of the ECMWF cloud
scheme was assumed). This approach cannot easily be extended
to sounding configurations as the cloud structure severely alters
the vertical weighting functions [21]. Moreover, the absorption
of the cloud is also dependent, through the dielectric constant,
on the temperature of the cloudy layer [50] which places some
importance on the location of the cloud within the vertical
temperature profile. An error in the temperature location is
likely to translate into an error in the resulting liquid total
amount. Chevallier et al. [7] demonstrated the proof of concept
of a 1D-VAR algorithm that could be used to assimilate
clouds data. A fast RTM was developed along with its adjoint
operator. It was applied to the advanced TOVS data. Deblonde
and English [8] also used a variational algorithm for the cloudy
but nonprecipitating conditions, similar to that of [36], except

that an alternative method was tested where the total-water-
content profile was retrieved and, then, split into humidity and
liquid using an empirical function. A higher rate of divergence
was reported using this approach particularly in the clear-sky
cases, but improved temperature retrieval performances were
found using this method in cloudy skies.

Liu and Weng [21] more recently proposed a multistep
variational algorithm that retrieved temperature, moisture, and
cloud profiles in all-weather conditions. NCEP forecasts were
used as background, and regression-based algorithms were used
to produce the first guess for temperature and humidity profiles.
Surface wind and pressure were also taken from the NCEP-
forecast data. The integrated amount of cloud liquid was found
to be consistent with the original value but that the profile
presented differences due to the limited information content. To
constrain the problem and make the retrieval more stable, hy-
drometeor profiles were modeled in an oversimplified fashion.
The present study could be viewed as an upgrade to the study
of Liu and Weng where the stability and information-content
issues are handled through the EOF decomposition which also
removed the need to have a multistep approach.

D. 1D-VAR + Cloud Models Approach

Cloud models have started recently to become part of the
1D-VAR schemes to force consistency between the temper-
ature and humidity profiles on one hand and the cloud and
other hydrometeor profiles on the other hand. Direct measure-
ments of brightness temperatures in rainy conditions started
being assimilated, first, at ECMWF [5] where low-frequency
SSM/I channels were assimilated and, then, experimentally
at MSC [9]. The first step in these two stage approach
(1D-VAR + 4D-VAR) consists of a 1D-VAR algorithm that
incorporates moist physical schemes in its forward operator,
which computes the hydrometeor profiles (cloud, ice, rain, and
snow) from the profiles of temperature and water vapor.

Moreau et al. [35] developed a 1D-VAR algorithm to re-
trieve the rain profiles with ECMWF model outputs used to
produce the first guess for temperature and humidity and a
cloud/convective scheme used to relate them to hydrometeors.
However, frozen hydrometeors were excluded in their exper-
iment which was mitigated by the choice of low-frequency
channels only.

Moreau et al. [34] compared the performances of two
1D-VAR-based retrievals of temperature and humidity profiles
from the passive TRMM and SSM/I data measured in rainy
areas. The first uses classically retrieved rainfall rate as input,
while the second uses directly the brightness temperatures.
Both use, besides an RTM, simplified convective and large-
scale condensation parameterization. They found that problems
with the convergence arise when background precipitation is
generated through convection and not by large-scale processes.

Bauer et al. [3] studied the performances of the cloud re-
trieval using the European Global Precipitation Mission config-
uration. They used the ECMWF short-term forecast profile of
temperature and humidity for the initialization of the first guess.
The hydrometeor first guess and background combines the
temperature and humidity profiles with cloud and convective
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model schemes, following a similar approach implemented in
[35]. In their study, surface emissivity and temperature were
fixed to climatologic values and not part of the control vector.
The temperature and water vapor were not part of the control
vector either, as the purpose was to assess the accuracy of hy-
drometeor retrieval only. For this reason, the forward operator
consisted of an RTM only (no convective or cloud scheme).
Deblonde et al. [9] incorporated the ECMWF approach into the
Canadian 1D-VAR assimilation system of the SSM/I retrieved
rainfall rates or brightness temperatures. The resulting inte-
grated water-vapor amount is assimilated in a 4D-VAR assimi-
lation scheme.

E. On the Use of Cloud and Convective Schemes in 1D-VAR

For it to work in a 1D-VAR context, the cloud and convective
schemes employed need to be simplified and made less nonlin-
ear which raises the question of their accuracy. Their adjoint
model needs also to be developed and incorporated. This can
be computed analytically (usually, for the simplified schemes)
or by finite difference (usually, for the full moist physical
schemes). The RTM would need to be coupled with the cloud
schemes, and therefore, their uncertainties need to be accounted
for. Deblonde et al. [9] questioned the usefulness of using a
deep-convection scheme for the assimilation of cloudy/rainy
radiances because of its high nonlinearity. The equivalent error
was found to have a very large spread in cases where deep
convection dominated. The inputs also need to be simplified
as cloud models do normally depend also on time trends of
radiation and vertical diffusion produced by the dynamical and
other physical processes. In the same study, it was highlighted
that using shallow convective scheme to produce cloud water
content in the 1D-VAR actually degraded the comparison with
the algorithm of Weng and Grody [46]. It was further shown
that the deep convective scheme deteriorated the fit between the
modeled and observed brightness temperatures, which shows
that the cloud model schemes are far from being accurate,
and their corresponding errors need to be accounted for in
the 1D-VAR assimilation when used, along with the RTM
errors. Contrary to RTMs, cloud models are very different and
produce nonsimilar results in most cases. If these differences
and impacts of linearization and simplifications are accounted
for, the resulting errors that a 1D-VAR must use might amount
to not constraining the retrieval. Moreover, cloud schemes have
been documented to be sometimes locally biased, in need of
tuning, and are by no means accurate in their relationship
between the temperature (T) and humidity (Q) profiles on one
hand and the cloud (C) and hydrometeor (H) profiles on the
other. Their use carries a set of uncertainties that would need to
be accounted for in the error covariance matrix, which would
defeat, at least partially, the purpose of using them as a means
to constraint the retrieval.

III. RETRIEVAL/ASSIMILATION SYSTEM

A. Suggested Approach

In this paper, we have adopted an approach that relies ex-
clusively on the direct-impact signatures of hydrometeors on

the brightness temperatures. The natural correlations between
the cloud and hydrometeor parameters are included in the sys-
tem, through the development of a covariance matrix that puts
constraints on the independence of these parameters, between
themselves across the layers as well as between the parameters.
Separate retrievals treating parameters independently cannot,
for obvious reasons, ensure that these retrieved parameters will
be consistent, all at once, with the measured radiances [37],
[38]. For this reason, in the approach adopted, all channels,
including window and sounding channels, are used simulta-
neously in order to retrieve all parameters together. The use
of sounding channels was shown to present many advantages
in precipitation probing, including their lesser sensitivity to
surface emittance and their ability to slice the cloud profile
vertically [3].

The effects of clouds could potentially improve the tempera-
ture retrieval of the cloudy layer rather than degrade it, due to
the increased absorption in that layer and, therefore, increased
sensitivity. Eyre [12] argues that retrievals that remove the
effects of clouds in preprocessing stages only degrade the
retrievals. This all-channel–all-parameter approach allows an
optimal extraction of information from the measurements. It is
also beneficial to use all channels together with sensitivity to a
wider range of precipitation amount [1] rather than a selective
channel set. The retrieval of cloud and hydrometeors in a profile
form presents some nice features, including avoiding in carry-
ing the cloud top and thickness in the state vector which usually
presents some instability, when these values cross the vertical-
level boundaries. It can also provide information about the mul-
tilayer nature of the cloud. Frozen and liquid profiles are both
retrieved in profile form, which means that at any given layer, it
is possible that we could get a mixture of these phases. This, of
course, would assume that we have enough radiometric signal
to distinguish them without ambiguity. With this approach:
1) Reliance on a moist physics model to relate the temper-
ature and water vapor to the cloud and hydrometeor profiles
is avoided, which allows 2) saving time by using only the
RTM to project the geophysical space into the radiance space;
3) derivatives are all computed through the RTM adjoint, and
no derivation of the cloud model is needed with its addi-
tional cost; 4) measurement errors, which are essential for the
1D-VAR, need only to be estimated for the instrumental noise
and the RTM uncertainty. Uncertainties associated with the
cloud physics modeling are therefore avoided; 5) dependence of
the resulting retrievals on NWP-specific information (forecast)
and/or convection scheme is also avoided. It is recognized
that the cause-to-effect type of relationship between the T
and Q profiles on one hand and the C and H profiles on
the other is no longer hard coded through a cloud scheme
coupled with the RTM such as in the studies aforementioned.
These constraints are however indirectly present, although
loosely, through the background covariance matrix to ensure
consistency, the same way that the temperature layers are
being constrained to produce a physically realistic tempera-
ture profile overall without a direct scheme that relates each
layer temperature to the others. This mechanism can take
advantage of known relationships between the hydrometeor
formation and the nonatmospheric variables. We emphasize
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that the retrieved cloud and hydrometeor profiles should be
viewed as an effective product that, radiometrically, represent
the effects of a conglomerate of parameters that have been
reported to have significant impacts on brightness temperatures.
These include the following:

1) beam-filling effect;
2) shape of the particles and droplets;
3) their orientation;
4) their density;
5) volume mixture rate of liquid and frozen matters;
6) particle size distribution;
7) vertical distribution of all of the above [6];
8) 3-D cloud and rain effects or nonvalidity of plane-parallel

assumption;
9) differences between the air temperature and the

frozen/liquid water phases temperatures.
Using these effective profiles in the retrieval is a result of
the recognition that we cannot realistically claim to be able
to retrieve accurately so many parameters with the available
number of channels, without too heavily relying on the external
data. We will call this handling of precipitation parameters, for
the purpose of retrieving temperature and humidity, a precip-
clearing procedure, as it effectively amounts to clearing the
effects of these precipitation parameters from the retrievals
of temperature and moisture profiles. We emphasize that this
precip-clearing is highly nonlinear as it accounts for the effects
of precipitation, not at the radiance level, but by accounting for
the hydrometeors themselves as part of the retrieved state vector
within the retrieval iterations.

B. Description

The 1D-VAR system used in this paper is labeled the mi-
crowave integrated retrieval system (MIRS). The retrieval of the
precipitating and nonprecipitating cloud parameters is done in a
profile form as said before, along with the temperature and hu-
midity profiles. A 100-layer pressure grid is used ranging from
1050 to 0.1 mbar. Layers below the surface are disabled before
the retrieval is triggered and do not play any role. The humidity,
cloud, and hydrometeor parameters are actually retrieved in the
natural logarithm space. This has the advantages of 1) avoiding
the nonphysical negative values and 2) making their probability
density functions (pdfs) more Gaussian, which is a necessary
mathematical condition, as will be described later. To alleviate
the limited information content available in the instruments
at hand, the inversion is performed in a reduced eigenvalue
space as mentioned before, which makes the retrieval process
stable and mathematically consistent; the number of EOFs used
in the retrieval is less or equal to the number of channels
available.

C. Mathematical Basis

The mathematical basis of MIRS is a proven and widely used
variational approach described in [39]. We will briefly review it
here for the purpose of showing that it is valid in precipitating
conditions as well. We will follow the probabilistic approach as
it will highlight the only three important assumptions made for

this type of retrievals, namely, the local linearity of the forward
problem, the Gaussian nature of both the geophysical state
vector and the errors associated with the forward model and
the instrument noise, and finally, that the measurements and the
forward operator are nonbiased to each other. It is important to
keep in mind that the variational, Bayesian, optimal estimation
theory, and maximum probability are all the same solutions (if
the same assumptions are made), although reached through dif-
ferent paths. The following will link the probabilistic approach
to the variational solution which seeks to minimize a cost
function. Intuitively, the retrieval problem amounts in finding
the geophysical vector X which maximizes the probability of
being able to simulate the measurement vector Y m using X as
an input and using Y as the forward operator. This translates
mathematically into maximizing P (X|Y m).

The Bayes theorem states that the joint probability P (X,Y )
could be written as

P (X,Y ) = P (Y |X) × P (X) = P (X|Y ) × P (Y ).

Therefore, the retrieval problem amount to maximizing

P (X|Y m) =
P (Y m|X) × P (X)

P (Y m)
.

X is assumed to follow a Gaussian distribution

P (X) = exp
[
−1

2
(X − X0)T × B−1 × (X − X0)

]

where X0 and B are the mean vector (or background) and
covariance matrix of X , respectively. Ideally, the probability
P (Y m|X) is a Dirac-Delta function with a value of zero except
for X . Modeling errors and instrumental noises all influence
this probability. For simplicity, it is assumed that the pdf of
P (Y m|X) is also a Gaussian function with Y (X) as the mean
value (i.e., the errors of modeling and instrumental noise are
nonbiased), which could be written as

P (Y m|X) = exp
[
− 1

2
(Y m − Y (X))T

× E−1 × (Y m − Y (X))
]
.

E is the measurement and/or modeling error covari-
ance matrix. Maximizing P (X|Y m) is a minimization of
−log(P (X|Y m)) which could be computed from the previous
equations as

J(X) =
[
1
2
(X − X0)T × B−1 × (X − X0)

]

+
[
1
2

(Y m − Y (X))T × E−1 × (Y m − Y (X))
]

.

J(X) is called the cost function which we want to minimize.
The first right term Jb represents the penalty in departing from
the background value (a priori information), and the second
right term Jr represents the penalty in departing from the
measurements. The solution that minimizes this two-term cost
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function is sometimes referred to as a constrained solution.
The minimization of this cost function is also the basis for
the variational analysis retrieval. In theory, one could also find
another optimal cost function for a non-Gaussian distribution
and nonlinear problems. It is just not as a straightforward
problem. The solution that minimizes this cost function is easily
found by solving for

∂J(X)
∂X

= J
′
(X) = 0

and assuming local linearity around X , which is generally a
valid assumption if there is no discontinuity in the forward
operator

Y (X0) = Y (X) + K[X0 − X].

K, in this case, is the Jacobian or derivative of Y with respect
to X . This results into the following departure-based solution:

(X − X0) =∆X

=
{
(B−1 + KT E−1K)−1KT E−1

}
× [Y m − Y (X0)] .

If the previous equations are ingested into an iterative loop,
each time assuming that the forward operator is linear, we end
up with the following solution to the cost-function minimiza-
tion process:

∆Xn+1 =
{(

B−1 + KT
n E−1Kn

)−1
KT

n E−1
}

× [(Y m − Y (Xn)) + Kn∆Xn]

where n is the iteration index. The previous solution could be
rewritten in another form after matrix manipulations

∆Xn+1 =
{

BKT
n

(
KnBKT

n + E
)−1

}

× [(Y m − Y (Xn)) + Kn∆Xn] .

The latter is more efficient as it requires the inversion of only
one matrix. At each iteration n, we compute the new optimal
departure from the background given the derivatives as well as
the covariance matrices. This is an iterative-based numerical
solution that accommodates moderately nonlinear problems
or/and parameters with moderately non-Gaussian distributions.
This approach to the solution is generally labeled under the gen-
eral term of physical retrieval and is also employed in the NWP
assimilation schemes along with the horizontal and temporal
constraints. The whole geophysical vector is retrieved as one
entity, including the temperature, moisture, and hydrometeor
atmospheric profiles as well as the skin surface temperature
and emissivity vector, ensuring a consistent solution that fits
the radiances.

D. Forward Model

This type of inversion of cloudy/rainy radiances supposes
the use of a forward operator that can simulate the multiple
scattering effects due to ice, rain, snow, graupel, and cloud
liquid water at all microwave frequencies and generate the cor-
responding Jacobians for all atmospheric and surface parame-
ters. The forward operator used in this paper is the community
RTM (CRTM) developed at the Joint Center for Satellite Data
Assimilation (JCSDA) [47]. CRTM produces radiances as well
as Jacobi, for all geophysical parameters. It is valid in clear,
cloudy, and precipitating conditions. Derivatives are computed
using K-matrix developed by tangent linear and adjoint ap-
proaches. This is ideal for retrieval and assimilation purposes.
The different components of CRTM briefly are the optical-path-
transmittance (OPTRAN) fast atmospheric absorption model
[29], the NESDIS microwave emissivity model [20], and the
advanced doubling adding radiative transfer solution for the
multiple-scattering modeling [22].

E. Covariance Matrix and Background

The covariance matrix plays an important role in variational
algorithms. Lopez [23] estimated an error covariance matrix
of cloud and rain from the French global model ARPEGE.
Chevallier et al. [7] simply defined an empirical covariance
matrix of clouds with large errors. Moreau et al. [35] used
the regular covariance matrix of temperature and humidity
which they convolved with moist convection and large-scale
condensation schemes to produce an ensemble of rain water
and cloud profiles. This covariance was computed for each
grid point. In this paper, the part of the covariance matrix B
related to temperature and humidity is based on a set of globally
distributed radiosondes (known as the NOAA-88 set) contain-
ing more than 8000 individual profiles, mostly over islands.
The impact of using a different covariance has not been tested,
but we expect that a more representative dataset could improve
the retrieval performances. The exact formula used to compute
these covariances is given as

σ2
ij =

1
N

N∑
i=1

N∑
j=1

(xi − xi) × (xj − xj)

where σij is one of the elements of the matrix corresponding to
row i and column j. N is the number of profiles used, and x is
the average value along the row or along the column.

The part related to the cloud parameters is, for practical
reasons, also built independently offline. These statistics are
generated from a multitude runs (three time-consecutive fields)
based on the fifth generation mesoscale model (MM5) simu-
lations, corresponding to hurricane Bonnie (1998), with 4-km
resolution and 23 vertical levels, which are extrapolated to the
internal pressure grid of MIRS (100 layers).

The ability of these runs to represent the hydrometeors’
global variability is not fully established, but this is believed
to be accurate enough for the case of hurricanes and tropical
storms. Impact studies (not shown) were also performed and
showed that the system is able to reach convergence (therefore,
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a radiometric solution) in many conditions that are independent
from the set that was used to generate these covariances. Given
the high dimensionality of the covariance matrix, it is techni-
cally not feasible to include the actual values of this matrix
in this paper. The matrix file is however readily available to
interested parties. The background is coming from the same
climatology used for building the covariance matrix, not from
the NWP forecasts. Because the climatology we used is neither
geographically nor time varying, the background fields are sim-
ply a mean value computed from a set of NOAA radiosondes in
the case of the nonprecipitating parameters and from a number
of MM5 runs for the precipitating parameters. These average
background values are used everywhere, which means that the
background field (to use data-assimilation terminology) is a
constant field with only one value: the mean climatic value.

F. EOF Decomposition

The retrieval in MIRS is performed in EOF space through
projections back and forth, at each iteration, between the
original geophysical space and the reduced space. This method
has been routinely used in operational centers as a standard
transform approach of control variables [24]. It has also been
used in the context of retrieval of trace gases, sounding, and
surface properties [20], [33], [43], [49]. Applying it in the
context of our 1D-VAR retrieval is therefore not very original
except may be for its extension to cloud and precipitation
profiles which is, to our knowledge, new. Only a limited number
of eigenvectors/eigenvalues are kept in this reduced space. The
selection of how many EOFs to use for each parameter is some-
how subjective but depends on the number of channels available
that are sensitive to that parameter. Other approaches exist
such as in [36], which suggested an objective way of choosing
which parameters will be included in the control parameters,
using the ratio between the background covariance matrix
and the a posteriori covariance (ratio of diagonal elements).
This ratio, however, depends on the Jacobian which is only
known at the end of the iterative process, unless the problem
is purely linear (not the case when cloud and precipitation as
well as the high-frequency channels are involved). Advantages
of performing the retrieval in EOF space are the following:
1) handling the strong natural correlations that sometimes
exist between parameters which usually create a potential for
instability (or oscillation) in the retrieval process (small pivot),
which is reduced significantly by performing the retrieval in
an orthogonal space and 2) time saving by manipulating and
inverting smaller matrices. The projection in EOF space is
performed by diagonalizing the a priori covariance matrix

B × L = L × Θ

where L is the eigenvector matrix, which is also called the
transformation matrix, and Θ is the eigenvalue diagonal matrix
which contains the independent pieces of information.
The retrieval could therefore be performed using the
original matrices B, ∆X , Kn as stated before (retrieval
in original space), or, alternatively, it could be done using the
matrices/vectors Θ, ∆X , Kn (retrieval in reduced space). The
transformations back and forth between the two spaces are done

using the transformation matrix L. It is important to note that, at
this level, no errors are introduced in these transformations. It is
merely a matrix manipulation. However, the advantage of using
the EOF space is that the diagonalized covariance matrix and its
corresponding transformation matrix could be truncated to keep
only the most informative eigenvalues/eigenvectors. By doing
so, we are bound to retrieve only the most significant features
of the profile and leaving out the fine structures. How much
truncation depends on how much information the channels
contain. In the AMSU configuration, six EOFs are used for tem-
perature, four for humidity and surface emissivity, one for skin
temperature, one for nonprecipitating cloud, and two for both
rain and frozen precipitation (a total of 20).

G. Convergence Criterion and Other Important Details

Several criteria have been reported for deciding on the con-
vergence of variational methods, among which are the follow-
ing: 1) testing that the increment of the parameter values at
a given iteration is less than a certain threshold (usually, a
fraction of the associated error of that particular parameter); or
2) testing that the cost-function J(X) decrease is less than a
preset threshold; or 3) checking that the obtained geophysical
vector X at a given iteration produces radiances that fit the
measurements within the noise level impacting the radiances.
We have chosen the last criterion as it maximizes the radiance
signal extraction. A convergence criterion based on J(X),
while mathematically correct, would produce an output that
carries more ties to the background and, therefore, would be
more inclined to present artifacts due to it. The convergence
criterion adopted is when

ϕ2 =
⌊
(Y m − Y (X))T × E−1 × (Y m − Y (X))

⌋
≤ N

where N is the number of channels used for the retrieval
process. This mathematically means that the convergence is
declared reached if the residuals between the measurements and
the simulations at any given iteration are less or equal than one
standard deviation of the noise that is assumed in the radiances.

Note that fitting the radiances within the noise level is neces-
sary but not a sufficient condition. We should note here that the
convergence criteria do not alter the balance of weights given
to the radiances (or to the background) in the cost function that
the 1D-VAR minimizes.

The evolution of the humidity profile is monitored for super-
saturation in the iterative process. A maximum of 130% relative
humidity is allowed. Currently, it is set in an ad hoc fashion
at each step. This has the potential to steer nonlinearly the
convergence from its mathematical path and should, in general,
be avoided, but our experience has shown that this has not
increased the divergence rate in a significant way.

H. Rationale for Precip-Clearing

By precip-clearing, we mean the inclusion of cloud and
hydrometeor profiles in the retrieval state vector, not so much
for the sake of their retrieval (whose accuracy is hindered by
the significant null space as mentioned before) but to account
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for all their effects on the radiances, as well as to account for
the effects of those related parameters that are not varied in
the retrieval process and instead assumed constant inside the
radiative transfer operator. This allows a more accurate retrieval
of the other parameters, namely, the temperature and humidity
profiles and the surface parameters. This is driven essentially
by the limited number of channels available or, mathemati-
cally speaking, the limited number of EOFs affordable, which
translates into a lack of sensitivity to fine vertical structures.
The integrated values of the cloud and hydrometeor parameters
(roughly represented by one or two EOFs) are however deemed
accurate from simulation runs.

IV. INSTRUMENTAL CONFIGURATION

In this paper, we will focus on the imaging/sounding chan-
nels of the NOAA-18 microwave sensors AMSU and MHS.
This platform was launched on May 21, 2005. The main
purpose of the microwave sensors is the atmospheric sounding
of temperature and moisture, but other products are being
produced routinely that include the rain rate, ice water path,
land surface temperature and emissivity, cloud liquid amount,
and total precipitable water [13], [21]. AMSU has two modules
(A-1 and A-2) with channels operating at centimeter and mil-
limeter wavelengths corresponding to frequencies ranging from
23.8 to 89 GHz and thirty scan positions per scanline. MHS on
the other hand probes at millimetric frequencies between 89 and
183 GHz with a higher spatial resolution (90 scan positions per
scanline). AMSU and MHS channels are unpolarized at nadir
and mix-polarized off-nadir. Both sensors have a cross-track
swath, scanning angles between nadir and 48.33◦, correspond-
ing to zenith angles reaching 58◦.

V. ASSESSMENT OF THE PERFORMANCES IN SIMULATION

This section deals with the simulation results aimed at as-
sessing the performances of the retrieval system in clear and
cloudy/rainy conditions. This assessment is hard to do using
the real data due to the lack of certainty about the true measure
of the geophysical state. Because the system is applied in all
conditions, we want first to assess its performances in the clear-
sky conditions. We, then, want to know what is the advantage
(if any) of using a multiple-scattering model rather than a
pure absorption model. These questions will be answered in
the following two subsections for an individual profile. The
AMSU/MHS configuration is used. The radiances are first sim-
ulated using the forward model described in Section III-D, then
the retrieval is applied after randomly impacting the radiances
by a Gaussian noise whose standard deviation corresponds to
the advertised NedT of the respective channels. These values
were found to be consistent with those computed from the
real data using the methodology of Mo [32]. In both cases,
the simulated radiances were performed with a nadir-looking
configuration. The background data used for these simulated
retrievals are the same as used previously in Section III-E.

A. Assessment in Nonprecipitating Conditions

Fig. 1 shows the evolution of the retrieved parameters during
the iterative process for a single profile where neither cloud

Fig. 1. Evolution of a sample of the retrieved state vector during the iterative
process for an individual profile. The parameters monitored are (from top to
bottom) the convergence metric, the vertically integrated cloud amount, the
rain water path, the graupel-size ice amount, the skin temperature, the total
precipitable water, the atmospheric temperature in layer corresponding to a
pressure of 865 mbar, and, finally, the water-vapor mixing ratio in the same
layer. The solid line is the retrieved quantity, the dashed line represents the
truth, and the dotted-dashed line corresponds to the first guess and background
values.

nor precipitation was included. It shows that the retrieved pa-
rameters are all reaching the true value within three iterations.
The convergence metric is plotted in the top panel, showing
that the measurements were fitted within the noise level. The
first guess for the cloud and hydrometeors was chosen to be
nonzero, and the values reached in the final iteration were all
zero, as expected. This gives us confidence that the system will
produce cloud-free retrievals when applied to the truly clear-
sky cases. Even if this is shown for one particular profile only, it
was tested under other configurations, and similar results were
obtained (not shown here).

B. Assessment in Precipitating Conditions

Figs. 2 and 3 show the retrieval of one cloudy and rainy
profile from an MM5 output run using two approaches. The
radiances have been fully impacted by the extinction (absorp-
tion and scattering) effect of cloud, rain, and ice droplets during
the forward simulation. The first approach (Fig. 2) consisted
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Fig. 2. Evolution, iteration-by-iteration of (from top to bottom) convergence metric, vertical profiles of temperature, moisture, and cloud amount. This is a
cloudy/rainy sky (dashed lines represent true values), and the retrieval (represented by solid lines) was made assuming a purely absorbing RTM (multiple scattering
turned off). Dotted-dashed lines represent the first guess and background.

of assuming that only absorption is happening; therefore, only
temperature, moisture, and nonprecipitating cloud amount are
retrieved, and the multiple scattering is turned off in the forward
operator of the 1D-VAR. The major effect this has on the
retrieval is the significant amount of supersaturation that the
water vapor is experiencing to compensate for the effect of
scattering, up to 200% relative humidity. This phenomenon
is consistent with the previous studies that actually took ad-
vantage of this feature to estimate the amount of ice in the
profile by looking at the water-vapor profile [19]. Note that
this particular profile has perfectly converged within four it-
erations. The same radiances are inverted in Fig. 3, but, this
time, by turning the scattering on, the rain and the graupel-
size ice are both retrieved simultaneously with temperature,
moisture, and cloud liquid amount. We notice that the water-
vapor supersaturation is much reduced. There is a sort of precip-
clearing of the radiances that allows a better retrieval of the
moisture profile. The temperature profile is not much altered.
The apparent discontinuity in the original temperature profile
is because it is a combination of an MM5-produced profile
up to 100 mbar (so that temperature, cloud, and hydrometeors
are consistent) and climatology above that level. Despite the
nonphysical transition of the original temperature profile at
100 mbar, which is simulated in the radiances, the retrieval is

able to accommodate to a certain extent, given the shape of the
background that constrains its departures. This is an example of
how the variational technique is balancing a priori information
and radiance-provided information. We also notice the degree
of nullspace; the hydrometeors are not reaching the true values,
and yet, the retrieval has converged within three iterations. This
demonstrates that with the degrees of freedom at hand, one
needs more independent radiances to constrain the problem. As
a reminder, our primary goal here is to sound temperature and
moisture in the cloudy/precipitating conditions, not so much the
sounding of hydrometeors themselves. The integrated amounts,
however, are expected to be reasonably accurate.

VI. VALIDATION USING GPS-DROPSONDES

Microwave imaging and sounding data from the NOAA-18
satellite were used to validate the retrieval system described
previously in both clear cases as well as under extreme weather
conditions, in the eye and within the eyewall of hurricane
Dennis in the summer of 2005. This was done by compar-
ing the retrievals of temperature and humidity profiles to the
measurements made by GPS-dropsondes. Before the retrieval
is performed, the brightness temperatures of the two sensors
are collocated and corrected of any bias when compared to
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Fig. 3. Same as Fig. 2, except that the vertical profiles of rain and graupel-size ice are added. This is a cloudy/rainy sky (dashed lines represent true values), and
the retrieval (represented by solid lines) was made with the full RTM where multiple-scattering effects are accounted for. The supersaturation of water vapor is
much reduced compared to Fig. 2. The apparent discontinuity in the original temperature profiles is caused by their combination of the MM5-produced profiles
up to 100 mbar and climatology above that level.

the forward-model simulations. The collocation is done in two
different ways: 1) An averaging is performed of 3 × 3 MHS
footprints to fit the AMSU spatial coverage (low resolution)
or 2) assume the AMSU footprint valid within all the subpixel
MHS footprints (high resolution). In this latter case, the sub-
pixel heterogeneity is computed from the MHS footprints and

translated into the AMSU channels but only for those that are
sensitive to the same geophysical parameters, namely, channels
23.8, 31.4, 50.3, and 89 GHz. The bias removal is performed
by simulating the brightness temperatures over ocean using
the NCEP Global Data Assimilation System (GDAS) analyses
as inputs. These biases were found to be scan dependent.
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The instrumental/modeling error covariance matrix E is also
built partly during this process by using the variances of the
same comparisons. These variances are subjectively scaled
down to account for the uncertainties in the GDAS inputs
and collocation errors. The diagonal elements (in standard
deviation, in Kelvin) of the modeling error matrix E for the
AMSU+MHS channels (from #1 to #20) are the following: 1.9,
1.7, 1.2, 0.6, 0.3, 0.2, 0.3, 0.4, 0.4, 0.3, 0.8, 0.0, 0.0, 0.0, 2.1,
2.2, 1.4, 1.6, 1.3, and 1.1. Channels 12, 13, and 14 peak above
the maximum altitude reported by GDAS, so the comparison
to GDAS simulation is not terribly meaningful, therefore, the
variances for these channels were deemed unreliable, and the
channels were disabled. These modeling errors are used on top
of the instrumental errors (NEDT values) which are computed
exclusively from the raw AMSU/MHS Level-1B data, which
are available from NOAA using the approach of [32]. For win-
dow channels, modeling errors are dominant over instrumental
errors. These values are slightly lower than those found in
the previous studies [9], [36]. They allow, however, a stable
convergence in most cases. Note that these modeling errors
are computed over ocean in the clear-sky conditions. The same
values are used over the cloudy/rainy conditions.

A. Dropsondes Data

It is critical that one gets a clear sense of how accurate the
so-considered truth measurements are before interpreting any
differences between them and the retrievals. In our case, mea-
surements are made in the cloudy/rainy conditions (typically,
during hurricanes and tropical storms) by high-velocity de-
scending GPS-dropsondes. They were obtained from the Hur-
ricane Research Division (HRD), Miami, FL, where they were
quality-controlled using the Hurricane Analysis and Processing
System. They operate at altitudes up to 24 km with a descent
time of about 12 min. The measurements are made every half
second which allows a high vertical resolution. Along with
the temperature and moisture, the vertical wind-speed profile
is also measured by using the GPS-based Doppler signal,
which is down to 4–10 m above the surface. The validation of
these dropsondes was assessed by a comparison with standard
radiosondes, radars, buoys as well as by a human visualization
of clouds for the saturation check. For a full description of these
measurements, see [16]. In their study, the inherent accuracy of
the temperature measurement was assessed to be 0.2 ◦C, but a
lag error correction exceeding 1 ◦C was applied for layers above
500 mbar. The humidity accuracy was assessed to be less than
5%, but up to 15% dry bias correction was sometimes applied
(S. Feuer, personal communication, 2006). As for the wind, an
accuracy of 0.5–2 m/s was estimated.

B. Limitations of the Validation in Extreme Weather Events

Traditional approach in validating the retrievals by statis-
tical comparison with ground-truth data collected around the
measurement’s time/space location is not optimal in the case
of hurricane conditions. The main reason is the fast-moving
features involved. A category 2 storm, for instance, has an
average forward speed of 30 mi/h (or 48 km/h), therefore, even

Fig. 4. Impact of shifting the field of brightness temperature by three scanlines
(here 89-GHz channel) that is measured during July 2005 hurricane Dennis to
simulate the effect of collocation errors in time and space. The map represents
the difference of the two fields (shifted and nonshifted). In the scatterplot, the
colors are modulated by the heterogeneity of the original TBs field. The darker
the dot is, the smoother is the area around the measurement. Areas where the
field is very heterogeneous (green-red dots on lower panel) have differences
exceeding 30 K.

if the storm features are all the same, a displacement caused
by a collocation criterion of 2 h would cause a 90-km shift
(∼6 scanlines of MHS). For illustration, Fig. 4 shows the effect
of a modest shift of three scanlines on a field of brightness
temperatures, assuming the geometry of the depicted storm did
not change between the shifted and the nonshifted fields. The
differences between the shifted and nonshifted fields reach very
high values that could make the comparison meaningless.

In reality, it is even worse: storm intensifies, fades down,
hydrometeor structures change, particles form/fall, the shift is
multidirectional, etc. Collocation errors are therefore expected
to be dominant in very active areas. Very strict criteria must
therefore be used for the validation of hydrometeor retrieval
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Fig. 5. Intravariability of dropsonde measurements in terms of temperature
and moisture profiles, which are made within an average of 10 min from each
other and within a radius of 10 km. Note that the descent time is roughly
12 min.

given their highly changing nature. Additionally, atmospheric
temperature in the rain and cloud might be different from
the air temperature. Sinkevich and Lawson [41] performed an
assessment of the accuracy of temperature measurements in
convective clouds and reported that temperature-excess amount
between in-cloud and out-of-cloud areas depends on the stage
of the life of the cloud and varied between 0.2 ◦C and up to
8 ◦C over ocean. Over land, an even greater temperature excess
was noticed. For all these reasons, there is a need to have an
almost perfect collocation in these active conditions, in order
for the comparison to be meaningful. Stringent time and space
criteria must therefore be used, which obviously dramatically
reduces the total number of coincident collocations. This, in
turn, renders the empirical assessment statistically meaningless
at best or practically unfeasible at worst. Note that the tight
time and space collocation must be between coincident satel-
lite measurements, hurricane events, and ground truth such as
dropsondes.

Fig. 6. Field of 157-GHz brightness temperatures taken during hurricane
Dennis on (top) July 6, 2005 and (bottom) July 8, 2005. Overlaid are the circles
centered around the location where the GPS-dropwindsonde was launched
from the aircraft. The horizontal color bar refers to the brightness-temperature
value. The vertical color bar represents the difference between the satellite-
measurement time and the sonde launch time. Collocations highlighted in the
upper and lower panels will serve as the validation in clear and precipitating
conditions, respectively.

Fig. 5 shows the measurements of four dropsondes that
were launched within the core of the hurricane (within and
around the eye) with an average of 10-min interval and within
10 km distance. Differences in temperature up to 4 K and
in moisture mixing ratio of up to 4 g/kg are noticed. These
differences are inherent to collocation–coregistration. Although
this is an almost perfect collocation between the dropsondes
themselves (no retrieval involved), because the hurricane active
features are moving fast, even a few minute interval and a few
kilometer distance can make the sensor (in this case, the ground
measurement) see a different signal. The descent time is by
itself a limiting factor. By the time the dropsonde descends, it
might be sampling the different parts of vertical profiles that are
significantly different. The verticality of the retrieved and the
ground-measured profiles is also an issue and adds to the overall
uncertainty. The dropsonde presents the potential of drifting,
while the retrieved profile’s verticality depends on the viewing
angle of the measurements where it was extracted from. If these
latter are nadir viewing, then the retrieved profile is vertical. If,
however, the channels are off-nadir viewing, then the retrieved
profiles are slant. This clearly puts an upper limit to the expec-
tations that one can have when comparing the retrievals with
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Fig. 7. Individual comparisons between dropsondes, MIRS retrievals, and GDAS. Note that all three have different pressure grids and different cloud tops. The
four dropsondes represented have different time differences. The collocations are outside the inner core of the hurricane, as shown in Fig. 6 (upper panel).

the dropsonde measurements. Another type of limitation that
one should be aware of is what other studies called representa-
tiveness error which relates to the fact that dropsonde measure-
ments are point measurement and do not necessarily represent
what the sensor is measuring within the field of view. This latter
is around 15 km for MHS, at nadir, but more than 45 km wide at
certain off-nadir viewing positions. Unfortunately, the number
of dropsondes collocated with satellite measurements is limited,
and therefore, the luxury of averaging within the footprint to
mitigate the representativeness errors (or around the time of the
measurement) cannot be afforded.

C. Case-by-Case Validation

Given the limitations discussed previously, and for the pur-
pose of the validation, it was critical to find the as-perfect–as-
possible collocation between the satellite measurements and the

GPS-dropsondes. We focused on the hurricane Dennis which
occurred on July 2005. Fig. 6 shows two days of that hurricane
timeframe, July 6 and 8. The field of 157-GHz MHS brightness
temperature is shown because of its sensitivity to cloud, rain,
and ice. The dropsonde launch location is also highlighted by
circles. The color of those circles indicates how far (red) or how
close (dark) in time they are from when the closest satellite
measurement was taken. The upper panel contains a number
of decent dropsonde/satellite collocations (in space and time)
that appear free of any impact of rain or ice (seems to be
the same signal as the surface background). These will serve
for the validation of our retrievals in a clear-sky condition.
The lower panel on the other hand presents some interesting
cases of dropsondes in the eye and within the eyewall of the
hurricane (see close-up figure) that are very close in time to the
satellite measurements. These will serve for the validation of
the retrievals in the extreme conditions.
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Fig. 8. Same as the previous figure, except that the water-vapor retrievals are represented. Retrievals were performed at the higher spatial resolution (MHS).
Differences are higher when the retrieval is done at the lower resolution (not shown). No NWP external data were used for these retrievals.

D. Clear-Sky Conditions

Figs. 7 and 8 show four individual dropsondes that were
identified above as clear sky along with the MIRS retrievals
and the GDAS analysis (included for reference). They corre-
spond to temperature and water vapor, respectively. The time
difference is highlighted in the different panels. For temper-
ature, errors are typically less than 1 K with a maximum
of 3 K in the low altitudes. Note that the retrieval goes up
to 0.1 mbar, while the dropsonde for this particular aircraft
goes only to 200 mbar and GDAS to 20 mbar. The rela-
tively large differences in the lower altitude might signal that
the brightness temperatures for the low-peaking and window
channels have some local residual bias that is hard to remove
using the global approach we used. The water-vapor compar-
isons show a rather good agreement between the dropsonde
measurements and the retrievals, except for the fine struc-

tures that the dropsonde is able to report while the retrieval
is not detecting. This is not surprising given the vertically
broad weighting functions of the 183-GHz channels and the
horizontal size of the radiometric pixel which covers a much
wider area than that of the point measurements. The latter
are sensitive to subpixel horizontal variability. It is interesting
also to note that, as one might expect, differences between
the retrieval and dropsonde measurements tend to increase
with larger time differences (displayed in the squares inside
the plots). These retrievals were performed using the high-
resolution footprint matching described earlier. Tests were done
to see the impact of performing the retrievals in low resolution
and were found higher due to the larger representativeness error.
Note that in a relative sense, the differences are within the
10%–30% margin in the vertical region between the surface and
500 mbar.
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Fig. 9. Retrieval of graupel-size ice content using MIRS. Note that the
output of MIRS is an actual profile. The figure above represents the vertical
integration (which is performed in the postprocessing stage). Hurricane Dennis
2005 passing through the Cuba Island. Retrievals are done at MHS resolution
(roughly 20 km).

E. Hurricane Conditions

Fig. 9 shows the vertically integrated graupel-size ice amount
[Graupel-size ice water path (GWP)] computed from the
retrieved profile. This is shown as a qualitative validation.
Although the retrieval is done in profile form, the resulting
integrated value displays physically plausible features and val-
ues. The retrieval corresponds to the same Dennis hurricane
on July 8, 2005 (same descending orbit shown before). First,
where no activity is present (from the 157-GHz brightness
temperatures (TBs), the retrieval is reporting no ice or rain,
even if the first guess used is actually a nonzero profile (the
same used everywhere). This confirms the conclusion reached
in a simulation setting (see Section V) that the system is able
to produce zero amounts when the signal in the TBs indicates
so, even when starting from the nonzero first guesses. Second,
the large values of GWP are concentrated in the middle of the
active area and decreasing gradually at the edges. One can even
see that, in what seems to be the eye of the hurricane, the value
of the integrated ice amount is actually very small compared to
the surrounding pixels.

Figs. 10 and 11 show the comparison of MIRS retrievals
to a few selected sondes that were dropped within the eye
and eyewall of the hurricane. The ones closest in time and
space were selected (highlighted in Fig. 6, bottom). GDAS
is also represented for reference. These figures correspond to
temperature and moisture, respectively. Both time difference
and distance between the space-based measurement and the
dropsonde are shown on the plots. Note that the vertical extent
goes to 700 mbar only for this particular aircraft that dropped
the sondes. GDAS and MIRS are still reporting retrievals up
to 20 and 0.1 mbar. It is found that these comparisons show a
rather good agreement between MIRS and the dropsondes, at
least for temperature. The differences are indeed well within
the intravariability of the sonde measurements themselves de-

scribed previously. On top of the intravariability and the rep-
resentativeness issues reported before, the vertical descent of
the sonde seems to tend to drift horizontally more drastically
within very active regions (see the blue curves on the figures).
In contrast, the descent is almost vertical in clear-sky cases.
Therefore, although the reported distance at launch location
is reported to be 2.6 km for the first sonde for instance, we
can see that when reaching the surface, the distance became
around 10 km. Again, in fast-moving features like hurricanes,
this factor could make a significant difference. For the closest
collocation (less than 12 min and less than 3 km in distance), the
difference in water vapor is actually also within the previously
reported intravariability. When time and distance differences
are larger, the moisture differences are larger. But, the er-
rors of representativeness and the vertical drift of the sonde
could at least, in part, explain the remaining differences. It is
worth mentioning that NCEP GDAS does ingest the dropsonde
measurements themselves within its assimilation cycle but not
the rain-impacted AMSU/MHS radiances. It is interesting to
notice in this case that GDAS analyses are exhibiting similar
differences with the dropsondes than the MIRS retrieval does,
although this latter is based solely on microwave radiances
measured from AMSU and MHS.

VII. CONCLUSION

We have used cloud- and rain-impacted brightness temper-
atures in a variational retrieval, using NOAA-18 AMSU and
MHS sensors. This was made possible owing to the CRTM
forward model, which produces both radiances in all-weather
conditions and the corresponding Jacobi for all parameters,
including the cloud and hydrometeor parameters. The CRTM
is incorporated into a microwave-dedicated retrieval system
at NOAA/NESDIS, which is called the MIRS. The MIRS
methodology described here is based on treating, in a consistent
fashion, all parameters that do impact the measurements. It is
also independent from the NWP-related information. The ill-
posed nature of the inversion is handled through the use of the
eigenvalue decomposition technique which makes the inversion
very stable, and a high convergence rate is obtained. It was
shown, in an ideal simulation case, that the null space is a
limiting factor. This translates into cases where the retrieval
process reaches a solution that satisfies the measurements, but
that is different from the original in terms of hydrometeor
and cloud profiles. Because of this and the limited informa-
tion content of the radiances, the aim of this retrieval was
essentially to target the temperature and moisture profiles as
well as the surface parameters in very active regions. The
hydrometeor vertical amount profiles help account for the ef-
fects they and the other parameters not accounted for explicitly
produce on the measurements (precip-clearing). Improvement
in the cloud and hydrometeor profiling is however expected, if
temperature and moisture profiles are provided externally from
accurate NWP forecasts for instance. Designing the retrieval
of cloud and hydrometeors in profile form presents a number
of advantages, including the avoidance to account explicitly
for the cloud top pressure and the cloud thickness, which
could, in certain cases, cause instability or oscillation. The
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Fig. 10. Case-by-case comparison of temperature profile between 700 mbar and the surface, between (green line) MIRS retrievals, (red line) GDAS analyses,
and (black line with fine vertical structures) GPS-dropsonde measurements. The blue line on the left represents the profile of the dropsonde distance drift with
respect to the location of the closest satellite measurement. The collocations are within the inner core of the hurricane, as shown in Fig. 6 (lower panel).

designed system could also, in theory, give information about
the multilayer nature of the clouds and mixture of phases within
the cloud/precipitating layers, provided that enough informa-
tion in the radiances exists. The retrieval system is used in
clear, cloudy, and precipitating conditions. It was shown in
simulation and confirmed with the real data that the perfor-
mances, when applied to clear skies, are not degraded and that
the retrieval algorithm is able to reach a zero-amount solution
for all the cloud and hydrometeor parameters if the radiances
indicate so.

A validation was undertaken in both clear and extremely
active conditions by a controlled comparison to measurements
by the aircraft GPS-dropsondes, which are taken in the vicinity
of hurricane Dennis. We first showed that extreme care must be
exercised when attempting validation in these weather events,
as very contrasted atmospheric features are moving fast, and
therefore, any collocation error in space and/or time could have

enormous impact on the comparison between the retrievals
and the ground-truth data. The collocation error, which is
coupled with the inherent descent time of the dropsondes, thus
sampling different parts of separate vertical profiles, would, in
fact, be the dominant source of error. This led us to use very
strict collocation criteria which, in turn, advocated doing the
validation by individual comparisons rather than by computing
statistical metrics. Another obvious major source of error is the
representativeness error. If the same sensor is looking at differ-
ent pieces of the atmosphere and this latter is very contrasted
with moisture, rain, cloud, falling frozen precipitation, etc., the
measurements could be very different. These differences are not
due to any retrieval or calibration issues, but simply to inherent
to 4-D variations of the atmosphere within the timeframe of
the measurements and within the area sampled by these point
measurements. Intravariability of the dropsondes themselves
was assessed using four individual sondes dropped within
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Fig. 11. Same as Fig. 10 except for the water-vapor profile.

10 min and a few kilometers from each other, which gave us
an estimate of the lower limit of the differences that we must
expect when validating the results.

We also hinted to the importance of the spatial resolution of
the measurements which plays a key role in these active areas.
To stabilize the sensor gain, the microwave radiometric mea-
surements need to be averaged within an integration time period
to reduce the noise level (NedT). This has the effect of reducing
the horizontal spatial resolution. It is however acknowledged
that this instrument noise is actually buried under other sources
of errors such as the modeling error. It is therefore preferable
from an assimilation or retrieval stand to have at least, in remote
sensing of highly contrasted events (such as hurricanes and
coastal boundaries), a higher horizontal spatial resolution with
a higher noise rather than a lower spatial resolution with a
reduced noise.

For the comparison between the MIRS retrieval and the
dropsondes, we focused on two days of hurricane Dennis, corre-
sponding to July 6 and 8, 2005. Results in the clear sky showed
that the differences in temperature and water vapor were mini-
mal. The finer vertical structures measured with the dropsondes
are, for obvious reasons, not expected to be picked by the re-
trieval given the broad weighting functions of the sounders. The

performances in the eye and the eye wall of the hurricane were
shown to be largely within the intravariability of the reference
measurements. These performances were comparable to those
of GDAS analyses that ingested the dropsondes themselves.
The MIRS-retrieved temperature and moisture profiles and the
emissivity parameters, in active areas, are expected to produce
positive impacts in the subsequent 4D-VAR assimilations, the
object of a future study. We, indeed, envision that our 1D-
VAR, which considers the hydrometeor parameters as part of
the retrieved vector instead of hooking it with a cloud model,
could be ported into an assimilation system and used in the first
part of a 1D-VAR+4D-VAR assimilation process.
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